A HISTORIC CHINESE CAMP WITHIN THE INDIAN CREEK GOLD MINING COMPLEX, TRINITY COUNTY, CALIFORNIA

ERIC W. RITTER AND ALDEN R. NEEL
BUREAU OF LAND MANAGEMENT, REDDING

Archaeological investigations prompted by proposed Bureau of Land Management vegetation management operations led to the discovery of a complex historic placer gold mining landscape in the Indian Creek drainage of Trinity County. The operations at multiple scales were the result of a dynamic evolution of techniques utilized by various ethnic groups, including Chinese miners. A small nineteenth century Chinese miners’ camp within the larger, complex mining community diaspora was studied, adding further information on their mining operations in the Northern Mines of California-Oregon.

Forestry health is a major concern in many areas of California. This is no less evident in public land managing agencies such as the Bureau of Land Management (BLM). One proposed forest health project within the Indian Creek watershed of northern California’s Trinity County was proposed by BLM in 2017 (Figure 1). Subsequently, federal regulations required heritage resource inventories and archaeological resource significance evaluations prior to surface-disturbing actions. As expected in the gold mining-rich district of the Northern Mines, gold extraction-related landscapes abound. One such correlated landscape in adjoining Reading Creek has been reported by Rooker et al. (2017). Ritter and Neel (2019) have more recently discussed the Indian Creek mining landscape in a comprehensive fashion. This article is a narrative of the archaeology of a small nineteenth century Chinese mining camp located within the larger Indian Creek mining landscape (Smithsonian number pending) that dates from 1848-1849 or the early 1850s and well into the twentieth century. While there are many similar studies of Chinese mining sites in northern California and beyond (e.g., Greenwood 1993; LaLande et al. 2015), the nuances of this camp’s configuration and contents allow for a better understanding of behavioral variations among the nineteenth century rural western North America Chinese mineworkers.

LOCAL ENVIRONMENT

This Indian Creek locality within the Klamath Mountains includes a narrow valley bordered by low mountains. The creek’s ultimate source is within the towering Bully Choop Mountain. The Indian Creek watershed includes nearly 8,500 hectares. The anadromous stream is permanent, with a sparse riparian strip in the study area bordered by mixed conifer, oak-conifer, and chaparral vegetation communities (Figure 2). The geology is complex, with gold-bearing Quaternary alluvial lower and higher terrace deposits, along with areas of various schists and serpentinized ultramafic rocks. Cool winters with abundant rainfall and hot, dry summers prevail.

CONTEXT

During the significant nineteenth century California-Oregon mining period (ca. 1850-1900), a small centralized community named Indian Creek (or Indeek) serviced the local miners and settlers. According to Jones et al. (1981:302), “The community included, at one time or another, a store, saloon, butcher shop, livery stable, corral and stagecoach shop,” as well as a post office and homes. It is unknown whether the Chinese miners used services here, with their main supplies more likely coming from the Chinese community in Weaverville some 14 miles (23 km) distant.
Hanover (n.d.:122) indicated that a few Chinese made their way into Trinity County as early as 1851, but they did not come in large numbers until 1853 and 1854. On July 30, 1859, the newspaper in nearby Weaverville, the *Trinity Journal*, related that many miners of Indian Creek “employ Chinese labor.” The same newspaper stated on June 20, 1874, that “There are about one hundred men—including Chinese—mining in that section, and all are doing well.” Hanover (n.d.:125) noted that in 1880 there were 80 Chinese at Indian Creek. The camp discussed here is likely only one Chinese operation of a number in the locality.
Furthermore, Indian Creek empties into the Trinity River where there was heavy gold mining for decades. Some of the records of Chinese use may relate to the river location, especially near the creek’s mouth, miles from the Indian Creek valley location discussed herein.

Rodgers (1995:7) related that one small tin-roofed shack in a tailings field along Indian Creek belonged historically to “Injun-Chinaman,” the son of a Chinese mother and an American Indian father. He lived there alone for many years. What involvement this man or his parents had in the mining ventures is unknown.

Aside from the Chinese, the Indian Creek Mining District included a diaspora of individuals from western North America, other areas of the United States, Canada, and Western Europe. The study area is just across Indian Creek from the nineteenth century town site of the same name. Many of the early inhabitants of the community were Portuguese (Jones et al. 1981:302). The first record seen by the authors of a Portuguese presence in the Indian Creek drainage is an 1855 water right claim to C. W. Soule et al. In the 1860 and 1870 census records for the Indian Creek district, there are a number of single Portuguese men and several families listed. Of the 85 people noted in the 1870 census (probably excluding the Chinese), nearly half had been born outside the United States, 13 of them in Portugal. Another 10 had been born in Ireland, six in Germany, four in Italy, two in France, and two in Canada, and single individuals were from Norway, Switzerland, England, and Scotland. Western Europe was well represented. American-born individuals included nine from New York, seven from Pennsylvania, three each from Illinois and Tennessee, two from Maine, two from Missouri, and single individuals from New Hampshire, Vermont, Wisconsin, Ohio, Virginia, and Alabama. There were also California-born children and one Native American. In this respect, among the Americans, the Northeast
and Midwest Yankees were predominant with post-Civil War Southerners less represented. There were six families present. Not unexpectedly, the 1870 census shows that 57 of the 79 adults enumerated were miners. Once again, it seems likely that the local Chinese were not counted in the census, and no records were found for Chinese mining or land claims.

The footprint of the Indian Creek mining complex measures two miles (3.2 km) in length east/west by 0.5 miles (0.8 km) north/south on BLM-managed land and interspersed private land alone. Placer mining evidence continues onto the north side of Indian Creek and in other sections of the valley. Mining features run parallel (east/west) to Indian Creek. Generally, there appears to be four distinct mining extraction methods represented, all of which occur throughout the locality and overlap temporally and spatially. We suspect that the creek was hand-worked and manipulated, with recovery using pans, rockers, and long toms, but evidence of such activities has been destroyed through flooding, erosion, and later mining endeavors. Stacked alluvial terraces on both sides of the creek were an area of focus soon after the first labors within the creek bed itself.

One of the obvious necessities for successful gold placer mining is water, especially when higher areas away from streambeds were mined relatively soon after the initial Gold Rush. Archival records are plentiful in this regard for the Indian Creek locality, and ditch and penstock conveyances, dams and reservoirs, drains, and mined ground all attest to extensive water use for decades. No records were found for Chinese water rights.

Gold extraction methods included placer mining of Indian Creek gravels, adjacent alluvial banks and terraces, large-scale hydraulic mining, and booming and rushing of natural drainages. The most important aspect of all extraction methods was water, the directional movement of water, and water pressure. Different mining techniques are manifested in multiple layers of tailings, drains, ditches, working areas, and headwalls. New extraction methods covered or displaced older endeavors creating a complex landscape. Within a small portion of this landscape is the Chinese camp and presumed operation, one overlapping earlier mining activities by presumed non-Chinese miners.

A BLM report indicates that during the Civil War period, “Indian Creek gold represented a sizeable portion of Trinity County gold” (Bureau of Land Management 1996:33). Furthermore, “Oftentimes mining claims were worked two or three times because there was such success at finding gold there. All of these ‘attributes’ led to fairly extensive hydraulic mining which devastated the hillsides and dramatically altered the streambed, causing rerouting of Indian Creek in some places.”

THE CAMP

A small (less than one acre, 21 m across) complex of walled compounds, foundations, tailings, boulder-buttressed flats, and mine drains was found during the inventory of the larger project area and mining landscape (Figure 3). Associated artifacts indicate that this is the vestige of a Chinese placer mining enterprise. Scattered surface artifacts are strewn over the complex, perhaps remnants of a hurried abandonment of the camp. Limited metal detecting and surface scrapes suggest that subsurface artifacts are present, but not to any depth. Nine settings were defined and mapped (Figures 4 through 6) as well as the immediate vicinity of these settings (within 50 m or thereabouts). Remnants of placer mining operations beyond these defined settings merge and continue for a number of km.

The largest component or setting of the Chinese complex (Feature 1) is a compound or courtyard-like configuration measuring 7.5 m north/south by 7.5 m east/west. The surrounding dry-laid, untrimmed neat boulder walls (as evident throughout the complex) are up to seven courses high and 45 to 130 cm in height, with width of walls from 70 to 130 cm (where the walls merge with cobble and boulder mine tailings). The floor is a gravelly-granular loam suggesting either unmined alluvium present or, more likely, sediments brought in to make the floor. Some of the walls may have defined spatial separations of activities like workshops versus camping/cooking areas.

The intermediate area between the compound and larger flat is about 5.5 m north/south by 4 m east/west (Figure 3). This area includes a continuation of the sediments present at the first described setting.
Figure 3. Sketch map of Chinese Camp.

Figures 4a and 4b. Left (Figure 4a): Mapping the Chinese Camp (2018 image). Right (Figure 4b): Feature 1, walled compound, view northeast (10 cm metric rod for scale) (2019 image).

The flat adjoining the intermediate area is about 5 m across and also includes unmined or introduced sediments. No larger clasts are evident in the adjoining tailings fields.

Feature 2 (Figures 3 and 5a) is 2.5 to 7.5 m north/south by 6.5 m east/west with surrounding walls 71 to 102 cm high and 188 cm wide, with four courses of boulders and large cobbles. The floor is tailings rock rubble, perhaps overlying finer sediments. The north wall is wing-shaped and is 7.6 m long in a northeast to southwest orientation, extending beyond the feature area.

Feature 3 (Figures 3 and 5b) is a square walled area over two meters across with rock rubble within, perhaps covering a floor. The wall height is between 71 and 102 cm, nearly two meters wide and four courses high, also merging into adjoining tailings.

Feature 4 (Figures 3 and 6a) is a well-built three-sided rectangular enclosure 1.85 m long by 1.42 m wide with four-coursed boulder walls 86 to 122 cm high. The back wall is slightly curved outward. Ash and a sheet metal subsurface indicate that this feature may have been used as a hearth.
The western and southern sides of the complex are a series of boulder/cobble tailings fields and rock-lined mine drains with artifacts scattered on the surface (Figure 6b). An eastern drain-supporting wall 91 cm high contains six to seven courses of large cobbles and boulders with adjoining cobble and boulder flat benches or terraces. This suggests Chinese use after a period of ground sluicing, and perhaps early hose/monitor hydraulicking.

Ritchie (1993:354) remarked that in New Zealand’s Central Otago, the majority of the Chinese miners’ huts were made of stone. Furthermore, the majority of the huts at Cromwell (New Zealand) were built of cobbles. He added that “The use of cobbles for house construction at Cromwell is readily understandable. The settlement there was established in an area which had already been mined by Europeans. Consequently, there was an abundant supply of cobbles available for construction purposes among the tailings” (Ritchie 1993:354). This appears to be the case at this Indian Creek location. Ritchie (1993:358) also noted that, “While
walled courtyards are a common component of houses in China, stone or adobe-walled enclosed yards are an infrequent feature of Chinese miners’ dwellings on the southern New Zealand goldfields.” Possibly the walled courtyard at the Indian Creek location is related to this Chinese practice. In discussing transient nineteenth century Chinese railroad worker camps in the American West, Voss (2018:293) related that the workers sometimes added stone walls and hearths to natural rock shelters and that some camps were organized into distinct activity areas such as where they slept versus where they cooked, ate, and socialized, but that “In others, cooking and social areas appear to be integrated with tents and other structures.” The location discussed herein looks to be rather tightly clustered in terms of apparent activity areas.

THE ARTIFACTS

In examining the artifacts noted during the location documentation, it is immediately evident that this was a work camp with apparent residency. Of the nearly 100 items identified, 30 were in the main walled compound, 10 more in the adjoining intermediary area, and 15 in the south side (see Appendix A). There does not appear to be a distinction between locations in terms of the dominant artifact types, which include worked iron sheeting, modified food canisters, and common cut nails, except to some extent between the compound or Feature 1 and the remainder of the site (see Appendix A). Part of this difference is due to surface and buried items in the compound where some scraping was undertaken as opposed to those artifacts lying on the rock tailings. It is also likely that cultural remains were tossed over the nearby bank into Indian Creek during location use, and some are evidently incorporated into the boulder and cobble tailings.

The Chinese signatures at this location include a Winter Green rice bowl with a base mark that can be interpreted as “sunrise” (see Appendix A and Figure 7a); a portion of a large brown-glazed stoneware storage jar (Figure 7b); ceramic sherds from one or more small, brown-glazed stoneware jars; a brass opium tin lid with the popular Sheungwan Fook Long cartouche (http://www.cinarc.org/Opium.html1); a small glass medicine vial; two Chinese machine-made packing crate nails (LaLande et al. 2015:55; Rogers 1997:31; Wegars 1995:106-107); and possibly some of the rectangular canisters (Johnson 2016; Rogers 1997:55). It should be noted that hand-forged small and larger L-headed nails were made by blacksmiths and nailers in the eighteenth and nineteenth centuries in the eastern United States, according to Kauffman (1966:118), who noted that they were used for trim, mouldings, and picture frames.

The remains that indicate limited residency are the ceramics, a lantern part (Figure 8a), a likely ground pepper bottle (Figure 8b), food cans (Figures 9a and 9b), a coffee boiler (Figure 10a), and a cast iron stove part on the edge of the site. A handful of western United States Chinese cabin sites have considerably more residential debris, including food refuse (LaLande 1981; LaLande et al. 2015; Markley 1992; Mead 1996; Meals and Stevens 1993; Pierson 2008; Ritter 1986; Sundahl and Ritter 1997), than observed here. The compound and flat could have served as a location for one or more wooden-floored tents. However, most evidence suggests day use and limited residency by Chinese mine workers with more substantial living facilities possibly nearby. What is more, the scattered debris implies a busy work area. Extensive archaeological excavations at this complex could change some of the hypotheses presented here. Some of the artifacts, especially away from the core area, could represent remains from other miners’ activities.

Most of the metal artifacts indicate reuse and modification as is common at other western United States Chinese camp locations and beyond (e.g., Markley 1992; Mead 1996; Ritchie 1986:34; Rogers 1997; Wegars 1995) (Figures 10b and 10c). Some of the remnants could be associated with construction activities, such as lining sluice boxes with iron sheeting for reinforcement and leakage prevention; patching holes; repairing/constructing sluice boxes, wooden rockers, equipment platforms or supports, and carrying poles; and patching modified cans. Ritchie (1986:340), referencing his New Zealand Chinese sites, stated that “Kerosene cans were also used extensively for metal sheetings . . . The tin-sheets were used for roofing, patching, garden borders . . .”

Aside from ferrous scraps removed or tossed out, there are a drawing knife, nails (general construction size), a wood screw, a rocker riddle plate remnant, and a ferrous wedge. The cut metal, some of which is a
Figures 7a and 7b. Left (Figure 7a): Winter Green rice bowl base (cm scale). Right (Figure 7b): Body sherd of Chinese Brownware jar (cm scale).

Figures 8a and 8b. Left (Figure 8a): Lamp coronet (cm scale). Right (Figure 8b): Pepper bottle (cm scale).

Figures 9a and 9b. Left (Figure 9a): Dry goods (tea?) canister (cm scale). Right (Figure 9b): Tin canisters (cm scale).
rather thick gauge, indicates use of metal snips and chisel-like cutting tools. The modified rectangular cans with the lids discarded may have been used as water or hot tea containers, suspended from poles for transport (Rogers 1997:73).

Reused cans for buckets and sieves infer food preparation and possibly gold recovery operations. Some with perforations may have been used to germinate bean sprouts (Wegars 1995:5) (Figures 11a and 11b). Markley (1992:28, 30, 34-35) ascribed perforated cans to food strainers or steamers. As reported by Rogers (1997:41) with regard to perforated tubs from a nineteenth century Chinese railroad camp in Nevada, they may have been used “to rinse and drain or sift something, the tub may have served in food preparation, laundering of clothes, or for an industrial purpose.” Such could be the case for the larger perforated rectangular tins at this Indian Creek location.

Penstock leftovers from hydraulic mining have been found in the general site area, but no such repair remnants were found at this location. An extensive trough that likely held long sluice boxes is present within 100 meters of the site. Common wire nails in this trough suggest late nineteenth to early twentieth century use as compared to the earlier dating evidence of the above-described settings (see below). Overall, the ersatz nature of the remains and the economizing of operations are quite apparent (Figures 12a and 12b). Moreover, some of the metal scrap was likely used more than once, judging by the mostly common cut nail holes in various configurations and frequencies.

Dating of this small Chinese operation, likely limited to a handful of men for a season or two, is not precise. Specific archival information on this camp was not forthcoming. The ground pepper bottle is identical to those from the steamship Bertrand (Switzer 1974:63) dating to 1865. No amethyst glass was noted, generally post-1870 in dating (Munsey 1970). Common cut nails in modest numbers compared to the rare wire nails suggest pre-1890s occupation (Wells 1998). Cans with soldered seams appear to have had the solder applied by hand implying a date preceding the early 1880s (Rock 1998:13). Large, sloppily made
soldered-seam rectangular cans from China date from the mid-1870s to the late 1890s in Nevada’s Cortez Mining District (Johnson 2016), and are likely the same age here, if not slightly earlier. The coronet lamp burner is probably a manufactured item made after 1861, based on patent dating (see Thuro 1976:42). The lack of clear hydraulic mining association is an important consideration. The operation was situated in the earlier placer mining vicinity, but apparently after major ground sluicing since there is reuse of earlier tailings. This suggests dating in the later third of the nineteenth century. Taking this evidence together, as well as the archival information, suggests that this camp was operational sometime in the 1855-1885 range, but we believe use was most likely in the earlier years of this range.

CONCLUSIONS

Overall, the data at the complex imply a small group of male Chinese miners undertaking tasks related to gold recovery and limited day-to-day living. There is no evidence of permanent or long-term structures. We are not able to fine-tune the evidence to suggest public versus private areas, formal versus informal areas, or socializing versus work areas, as Rogers (1997) was able to do at a Chinese railroad graders’ camp near Carson City, Nevada. There do appear to be separate activity or use areas as defined by walls. These could include a cooking feature and a sleeping area. The Indian Creek location is small in scale, suggesting
a comfortable, informal, confined setting for the men here. Chiu (1967:30) remarked that between 1867 and 1880, over half of the total mining population in California was Asian, working as independent placer miners. Williams (1971:39-40) indicated that from the mid-1850s to the 1870s “... camps were almost invariably located on the banks of streams and often upon the sites of diggings already worked over by American and other miners... in isolated and inaccessible places—somewhat removed from American mining camps.” This seems to fit the location discussed here. Older tailings were repurposed into walls for use area definition. Later hydraulic mining areas appear to have been above this camp, although drainage and sluicing may have occurred in the camp vicinity (within scores of meters), possibly after camp abandonment.

While this is the only mining complex that we can ascribe to the Chinese in the Indian Creek areas inventoried, we suspect that others may be located within the greater watershed in unsurveyed areas. This camp is another constituent of the mining and settlement diaspora within this watershed and beyond in the Northern Mines, a pattern repeated throughout the Gold Rush and thereafter. The immigrant Chinese miners had an apparently small place in the diaspora of this drainage system for a number of decades here, but they had a very large role overall for a long interval in the Klamath Mountain gold fields.

The mining landscape left in Indian Creek is complex, generally reflecting operations that focused on the creek terraces and hillside gravels. Water for the gold extraction activities does not seem to have been a problem, from lesser ground sluicing likely at the Chinese camp vicinity, to high-pressure hydraulicicing and massive ground sluicing and booming farther upslope.

The Indian Creek Mining District was one of the largest of hundreds in the county and apparently was highly productive for decades. The gold here was quite pure. The location is still relatively remote and intact, with a good definition of features and the possibility of subsurface cultural deposits that could yield more details on the human presence and experiences here.

The overall remains in the Indian Creek watershed represent a complex mining landscape and associated structures, features, and artifacts, with a story of endurance, hardship, entrepreneurship, ethnic diversity, and sometimes reward. Chinese miners were an integral part of the greater picture and landscape formation. The Chinese presence seemingly speaks to the human ingenuity, shared experiences of immigration, settlement, displacement, economic development, and abandonment of many operations here.

As a final note, we appreciate the commentary by Mary and Adrian Praetzellis (2015:162) regarding sharing our information beyond the archaeology community. We offer this small study in the context of the larger locality and regional diaspora, letting others take it to a higher level of information sharing beyond the archaeological and Trinity County historical communities.

REFERENCES CITED

Bureau of Land Management

Chiu, Ping

Greenwood, Roberta S.

Hanover, Rita

Johnson, Erika
Jones, Alice Goen (editor), Richard Krieg, Elizabeth Bigelow Langworthy, Henry C. Meckel, Florence Scott Morris, Walter Robb, and Herbert Woods
1981 *Trinity County Historical Sites*. Trinity County Historical Society, Weaverville.

Kauffman, Henry J.

LaLande, Jeffrey M.

LaLande, Jeffrey M., Eric W. Ritter, and James J. Barnes

Markley, Richard E.
1992 *An Evaluation of Two Chinese Mining Camps on the North Yuba River, Sierra County, California*. USDA Forest Service, Tahoe National Forest, Grass Valley, California.

Mead, George

Meals, Hank, and Dennis Stevens
1993 *Tailings and Time Travel–The Plot ‘Slickens’: A History of Placer Mining Methods and Communities along a Portion of the North Yuba River, 1848-1942*. Heritage Resources Informational Series, Report Number 1, Tahoe National Forest, Nevada City, California.

Munsey, Cecil

Pierson, Heidi
2008 *The Historical Archaeology of Ethnicity at Two Mining Camps in West Redding, California*. Master’s thesis, Department of Anthropology, California State University, Chico.

Praetzellis, Mary, and Adrian Praetzellis

Ritchie, Neville A.

Ritter, Eric W.

Ritter, Eric W., and Alden R. Neel
2019 *Historical Archaeology of a Gold Mining Diaspora, Indian Creek, Trinity County, California*. Paper presented at the Society for California Archaeology Annual Meeting, Sacramento, California.

Rock, Jim

Rodgers, Harold W.
Rogers, C. Lynn

Rooker, Angela, Eric W. Ritter, and Alden Neel

Sundahl, Elaine, and Eric W. Ritter

Switzer, Ronald R.

Thuro, Catherine M. V.
1976 *Oil Lamps, the Kerosene Era in North America*. Paducah, KY: Collector Books.

Voss, Barbara L.

Wegars, Priscilla

Wells, Tom

Williams, Stephen
APPENDIX A

INDIAN CREEK MINE CHINESE WORK CAMP

SURFACE ARTIFACT DESCRIPTIONS AND OTHER OBSERVATIONS
(INCHES USED EXCEPT ON KNOWN CHINA-DERIVED ARTIFACTS AND STRUCTURES)

COMPOUND/FEATURE/STRUCTURE 1

North wall variable ht 45-59 cm; east wall 75-95 cm ht.; south wall 65-130 cm ht.; 70-90 cm wall wd with one “wall” 120 cm+ as it merges with boulder tailings. Up to seven courses of mostly boulders, but generally over five. Soil is a hard to indurated gravely/granular loam at location suggesting some of the sediments may not have been mined and perhaps some may have been brought in for flooring. There does not appear to be any sorting of gravels and sands, but there are no cobbles present.

(1) Ferrous bucket from rectangular canister. Top cut off and rim rolled with side D-rings added at rim for handle. Canister made from 3 side sheets, top sheet and bottom sheet with lap seams soldered. Ht. 15 9/16” x 6” depth x unknown width dimension but likely over 9”.

(2) Perforated rectangular ferrous canister (60+ knife holes on sides and bottom). Top removed and rim hand-rolled. 5 sheet construction with soldered lap seams. 15 9/16” ht x 9” ln x 6” wd. Top edges perforated for placement of a wire bail (food product sieve or drain?).

(3) Cut and folded scrap tin sheet with common cut nail hole and ¼” embossed rim. Sheet is 18 ¼” ln and 4” wd.

(4) Ferrous coronet burner for a lamp. Ht 1 7/16”; maximum dia 1 1/2”; top dia 1 7/16”. Lap seam with ¼” wire nails and small gauge wound wire and 20 teeth to hold base of glass chimney.

(5) Ferrous strap or band with one rivet. Ln 8 3/4”; wd 3/8”; th 1/32”.

(6) Rectangular ferrous canister lid 9 3/8” across. Lid cut and removed with one edge crimped and semi-circular embossing on other corners.

(7) Flattened ferrous hole-in-cap canister with ht of 4 7/8”; and flattened wd of 4 5/8”; soldered lap seam.

(8) Scrap tin, cut? Miscellaneous holes in sheet with one round-headed rivet left. Sheet japanned with red coating remnants present. Ln 24” with maximum wd of 9 1/2”, deteriorating on one edge. Th 1/32” or less.

(9) Possible companion sheet metal scrap to #8. Common-cut nails holes present along with one round hole. Ln 21 1/2”+ with one edge 9 3/4” wd. Number 8 and 9 may be parts of sluice box siding.

(10) Ferrous knife-edged bar with missing handle spurs that are 3/4” wd. Overall ln is 10 1/4”, bar wd is 1 3/16” and blade wd is 1 1/16”. This was a straight-edged drawing knife.

(11) Scrap tin sheeting canister part with soldered lap seam. Ln 8”+; wd 4 3/4”+

(12) Two Chinese L-nails. 4.2 cm ln and 4.0 cm ln.

(13) 2d wire nail

(14) Common cut nails: 9d, 10d, 12d, 16d; 4 common cut shanks.

(15) Ferrous wood screw, size 7.

(16) Two strap fragments 5/8” wd.

(17) Aqua glass shards from one or more bottles.

(18) Ferrous rod 2 1/2” long, 3/32” dia, broken or incomplete?

(19) Three Chinese brownware sherds, including a foot ring of a bowl or jar 9 cm in dia. A brown-ware liquor bottle in BLM’s collection, for instance, has an unglazed foot ring 9 cm across. Part of interior is unglazed.

(20) Medium green bottle shard.

(21) Light green thin multi-sided bottle or jar shard.
INTERMEDIATE AREA BETWEEN COMPOUND AND FLAT

(1) Heavy tin sheet scrap, ln 42 1/2”; wd 39 3/8”; th 1/32”. Sides are soldered seam remnants, one with edge folded; one corner cut off and one edge shows it was cut. Many common cut nail holes with some round (nail or punch?) suggest siding of sluice box or building.

(2) Top cut from cylindrical tin container, 8 7/16” dia. Three embossed “Ds” on top along with spout remnant.

(3) Small tin container or box lid with central embossed rectangular panel. One edge is rolled with wire inside roll for hinge. There is a latch on the interior opposite hinge side. Ln 5 7/16”; wd 2 9/16”.

(4) Cut tin scrap, ln 12 3/4”+; wd 6 3/4”+. Piece is deteriorating but it has been japanned and it exhibits three undetermined nail holes.

(5) Folded tin scrap with rolled edge. Ln is 9 3/4” and width is 8”+.

(6) Folded (smashed) rectangular tin container with one nail hole. Manufactured from at least three sheets with soldered lap seams. Ln is 12 1/2”+; wd 9 1/4”+.

(7) Rectangular tin container with stamped end. This artifact was cut near the base of the container, and the edges were folded to make a shorter container. Ln 9 1/2”; wd 5 1/8”.

(8) Folded and cut tin scrap lacking seams. Ln 6 1/8”; wd 5 1/16”.

(9) Tin pan or plate edge with folded rim and then this scrap remnant was folded. Ln 18”+; wd 2 1/4”.

(10) Possible rectangular tin scrap with rims folded over slightly; 5/16” th. Artifact may have been japanned and piece folded into “accordion-like” folds. Ln 11 7/16”+; wd 9 3/8” actual.

FEATURE/FOUNDATION/STRUCTURE 2

Wall ht 71-102 cm., wall wd 188 cm.; four courses high of boulders and cobbles.

(1) Three tin scraps.

(2) Tin coffee pot or “Iron Coffee Boiler.” Ht 8”; dia base is an estimated 7 1/2”; dia top is an estimated 4 3/4”. Wire bale and tapered handle soldered. Three-holed “hourglass-shaped” or “pear-shaped” lugs present.

(3) Cut-up tin washbasin utilized for scrap pieces. Original dia 13 1/2”. Most of basin has been removed.

(4) 16d common cut nail.

(5) Barrel hoop 1 1/2” wd.

FEATURE/FOUNDATION/STRUCTURE 3 (ROCK RUBBLE WITHIN FLOOR)

Structure/feature foundation measures 235 cm x 244 cm across. Wall ht varies between 71 cm and 102 cm; 188 cm width with 4 courses of boulders/cobbles. Contours into boulder tailings.

(1) Brass opium tin lid with Sheung Wan Fook Lung cartouche. Crumpled tin about 4.3 cm wd.

(2) Sheet metal scrap.

(3) Common cut nail shank.

(4) Rectangular tin canister with oval friction lid top. Ht 9”; wd 2 1/2”; depth 3 1/4”. Oval opening is 2 1/2½” x 1 1/4”. Possibly a Schilling dry goods canister.

(5) Rectangular tin canister modified into a bucket with a D-ring added and then punched near lip for handle. Lap seam with cut top crimped over to dull the edge. Ht 9 1/2”; ln 9”; wd 6 3/16” as best determined with crumpling evident.
FEATURE/FOUNDATION/STRUCTURE 4

“C” shaped structure/feature in plan 185 ln x 142 cm wd. Wall ht 86-122 cm. Wall wd is 140-150 cm, sloping outward into at least 130 cm in one direction and 1 m in another direction. Wall is 4-5 courses high consisting mostly of boulders.

1. Ash concentration noted.
3. 3 16d common cut nails, 2 20d common cut nail shanks, 1 10d wire nail.
4. Tin sheet scrap 11”+ ln; wd 6 3/4”. Sheet exhibits burn/charcoal stains with three sides cut and a semi-circle cut out along one edge.
5. Ferrous tapered spike 10” long. Head has 1 1/4” ln and 1/4” wd exhibiting battering. Maximum wd of shank is 1 1/8” with a th of 5/8”.

FLAT ADJOINING STRUCTURES

1. Wash basin manufactured from five tin sheets with soldered seams and missing handles that had been soldered on. The warped remnant has an estimated lip dia of 14 1/2”; bottom dia of 12 1/4”; and ht of 6 3/15”.
2. Ferrous cut lid with soldered spout gone; possibly coffee pot lid. Dia 4 3/4”; hinge wd 5/16”.
3. Cut tin piece with embossed band on rim that has been hand-folded. Ln 13 3/16”; wd 6 3/4”.
4. Ferrous heavy bar pounded on edge and chisel-cut on other end. This possible shim or wedge is 5 3/4” ln; 2” wd; 1/4” th.
5. 12d common cut nail.
6. Rectangular tin canister section cut and folded into three sides. Possibly japanned with additional red coating. Ln 11 1/2”; wd 9 1/4” — corroded.
7. Flattened tin canister friction lid with soldered seam. Flattened ln 9 7/16”; ht 4 5/8”.

WEST SIDE OF FEATURE COMPLEX

1. Galvanized corrugated metal scrap with each strip 1 1/16” ln. Ln 10 1/2”; wd 4 1/2”.
2. Square tin canister lid with rounded corners on opposing sides. Soldered seam evident. Sides are 4 1/2” ln.
3. Flattened tin canister, two pieces with soldered lap seam. No ends present. Cut edges. Rolled edge on top; cut on base. Flattened end 10” ln; ht after cutting 5 1/8”.
4. Large ferrous rectangular canister scrap with patched hole. Cut piece is 5 1/8” ln, 2 5/16” wd. Square patch is 1 15/16” across. Probable filler hole dia is 1 3/4”.
5. Scrap cut tin canister piece with rolled edge. Ln is 8 3/4” as cut.
6. Twisted wire 2” in ln. Dia of wire is 1/16” (16 gauge).

SOUTH SIDE OF COMPLEX IN TAILINGS FEATURES

1. Large modified ferrous cylindrical bucket-like container with top bale and seams reinforced—machine-made? May be galvanized. Bottom and part of top cut off. Ht is 9 1/2”, dia is about 8”. “Hour-glass” or “pear-shaped” lugs are 2 1/16” ln.
2. Rectangular ferrous canister with soldered seams. Ht 4 3/8”; wd 4”; depth 2 5/16”.
3. Cylindrical ferrous canister with soldered seam and ends missing. Ht 4 3/8”; dia 3”.
(4) Cylindrical ferrous hole-in-cap canister with soldered lap seam and end cut. Ht 4 1/2”; dia 3 1/2” with stamped ends.
(5) Cylindrical ferrous hole-in-cap canister with crimped seam. Ht 4 1/2”; dia 3 1/2”.
(6) Ferrous sheet metal scrap, japanned with one edge crimped one direction and the opposing edge crimped the other direction. Undefined nail holes were driven from both sides. Ln is 10 1/2”; wd is 9 1/2”.
(7) Thick ferrous sheet fragment with hand-punched circular holes, each about 1/2” dia. Fragment Ln 7 1/2”. Perforated rocker hopper base or riddle.
(8) Rectangular ferrous canister cut with knife. Ln 4”; ht 3 3/8”; wd 2”.
(9) Ferrous rectangular canister top cut off with patch soldered over hole. Ln 8 7/8”; wd 6”. Patch is 2” across with filler hole 1 3/4” dia.
(10) Rectangular ferrous canister top cut from larger can with patched hole. Ln 8 3/16” as removed; wd 5 1/2”. Patch 2” across with likely filler hole 1 3/4” dia.
(11) Trimmed/cut ferrous sheet metal band of larger sheet with 10 round nail or punch holes. Ln 19 3/4”; wd 1” ±.
(12) Ferrous rectangular canister base with embossed circle. Remnant solder drippings evident. Ln 4 1/2”; wd 3 1/4”.
(13) Ferrous rectangular canister with soldered seams. Ln 8 1/2”, wd 7”+.
(14) Ferrous cylindrical canister lacking ends. Lap seam evident. Ht 4 1/2”; dia 3 1/2”±.
(15) Ferrous rectangular can bucket remnant. One end decomposed, the other end cut off. Artifact folded. Ln estimated at 9”; wd estimated at 7”; ht 12 1/2”+.

VICINITY ARTIFACTS (WITHIN 50-75 m)

(1) Ferrous rectangular canister with spout. Drippy solder extensive. Ht 9 7/8”; wd 4 15/16”. Spout dia 1 1/8”; ht 1/2”.
(2) Small fragment of white improved earthenware vessel.
(3) Aqua eight-sided pepper condiment bottle with applied lip. Ln 6 5/8”; wd 2 1/2”, th 1 1/2”.
(4) Broken Chinese Winter Green rice bowl with base mark. The mark appears similar to one posted on the internet (https://www.pinterest.com/pin/395120567290530209/) translated as “sunrise.” On this web page, it states: “Antique blue-white Ming bowl China” and has the following description, “This flower bowl is similar or almost the same like the flower bowls on the Desaru shipwreck (sunk in 1830C).” Foot ring is 5 cm dia; base mark 1.5 cm across
(5) Large Chinese brownware vessel fragment.

EAST DRAIN SUPPORTING WALL

91 cm ht; 6-7 courses of boulders/cobbles. Adjoining terraces or benches 305 cm and 122 cm wd.