LITHIC AVOCATIONAL COLLECTION FROM EASTERN CALIFORNIA
AND WESTERN NEVADA: AN OVERVIEW

EMMA N. DAUPLAISE
Maturango Museum

Over the course of about 50 years a large collection of lithic material from eastern California and western Nevada was collected and eventually deposited by the BLM into Maturango Museum for curation. The collection consists of mostly flaked stone specifically projectile points that has been analyzed, categorized and entered into a database. The collection is still in the process of being cataloged so that there can be a quantitative data analysis on the typologies and materials present in the collection. An overview into this very large collection could allow for research into use patterns of the area.

BACKGROUND

The Zumstein Collection is an incredibly large collection composed of primarily lithic technology which was collected by a family over the course of about 50 years. Once the family realized the ethical problems with this avocational collection, they were kind enough to deposit it to the BLM in Bishop, California. The collection was loaned to the Maturango Museum in Ridgecrest, California for curation in 2017. What the museum currently holds is approximately 10 percent of the total collection and the cataloging process is still in progress. This collection was primarily stored in See’s candy boxes (Figure 1), and currently the museum has a count of 4,221 items of the Zumstein Collection with much more left to catalog. The museum began the curation process in the summer of 2017 with the help of Curation Assistants and Archaeology Interns. Due to the nature of this collection, there are only so many types of analysis that can be done so the primary focus of the curation of this collection is to identify as much as possible and to organize the collection into a tailored classification system for a comprehensive analysis of the contents of the collection.

APPROACH FOR CURATION

Knowing that this collection lacked provenience and site information, the priority for cataloguing became identifying the typologies of projectile points and lithic material that was found. Using Microsoft Excel, we used a classification system that focuses on identifying typologies according to the Great Basin stone tools outlined in Justice (2002). The flaked stone categories used include: projectile point, biface, flake tool, drill, core, core tool, crescent, and debitage. Once an item is identified more information such as condition, material, and notes are taken. The notes taken are incredibly important as each box of items has a small number of notes that can be inferred to be the locations to which these items were possibly found. We also took metrics for each projectile point individually: length, width, thickness, and weight. To ensure consistency with the cataloguing process interns are trained in Great Basin typologies and lithic identification and worked in teams of two so that there is teamwork in identifying and discussing the artifacts. The interns were overseen by our Archaeology Curator to assist us in identifying unique objects and answering any questions. The items in the collection are no longer stored in “See’s” candy boxes; instead are individually bagged and organized numerically according to their catalog numbers.

ROUGH PROVENIENCES

One of the challenges faced in analyzing this collection is the lack of notes and provenience for the collection. Each one of the See’s candy boxes (Figure 1) have a small note or locations written on them. Some of the locations include broad descriptions such as Monitor Valley, Truman Meadows,
Bridgeport, and Huntoon Valley. These locations allow for some limited inferences on the potential rough provenience of these artifacts based on the typologies that are being identified within the collection.

CONTENTS OF COLLECTION

The contents of this collection consist primarily of projectile points and various other lithic technologies. The most common type in the assemblage are points of the Elko series (Figure 2) with more than 900 identified Elko points. The other most common typologies are Rose Spring, Cottonwood Triangular, and Desert Side-notched (Figure 3). There is a small amount of identifiable Gatecliff series (Figure 4) points within the collection as well.

The presence of Gatecliff gives insight to the potential proveniences of the collection. According to Justice, the Gatecliff were most commonly collected in Monitor Valley, Nevada (2002:145). The Gatecliff points are thought to be possible predecessors to the Elko cluster dating to the Archaic Period approximately 5000–3300 BP (Justice 2002:304). The points within this collection have been predominantly made of obsidian with a smaller concentration of cryptocrystalline silicate (CCS).

The most common typology we found within this collection was the Elko Series (Figure 2) with more than 900 catalogued so far. The Elko series dates to the Late Archaic to Intermediate Period approximately 3500–3300 BP to 1400–1300 BP and is distributed throughout the entire Great Basin (Justice 2002). More than 60 percent of the Elko points are made of Obsidian with the rest composed of CCS.

The rest of the collection of projectile points consists of Rose Spring, Cottonwood Triangular, and Desert Side-notched points. These points date much later than the Elko and Gatecliff typologies and are
Figure 2. Intact Cryptocrystalline Silicate Elko Projectile Point from the Zumstein Collection.

Figure 3. Obsidian Desert Side-notched Projectile Point from the Zumstein Collection.
Figure 4. Obsidian Gatecliff Projectile Point Basal Fragment from the Zumstein Collection.

distributed throughout Eastern California and Western Nevada (Justice 2002). Majority of these types in the Zumstein collection were also composed of Obsidian with smaller amounts of CCS.

FUTURE GOALS

Ultimately, the goal of this collection is to complete cataloguing and transfer the data from Microsoft Excel into FileMaker Pro so that the information can be accessed in a more streamlined manner. There will be a need to revisit the categorization of typologies once cataloging is completed so that there can be a more updated perspective on this collection. This is a massive collection that could possibly benefit from more in-depth geochemical analysis of the materials and locations noted on the original collection boxes to research use patterns and typology distributions.

ACKNOWLEDGEMENTS

I’d like to acknowledge and thank the Zumstein family for donating this collection to the BLM. Thank you to Greg Haverstock and the BLM for their contribution to Maturango Museum by allowing us to work on this collection as well as funding two interns for our Summer Internship Program. I’d also like to thank Daisy Zajicek for helping start this massive project in the summer of 2017 alongside our other interns Levi Bayer, Carol Blair, and Inda Alexander who did a great job tackling this collection. Thank you to Kirsten Carroll, Kara Jones, and Shannon Labelle for your support. Finally, I’d like to thank Alexander Rogers immensely for giving all of us the invaluable experience of working on collections at Maturango Museum, mentoring us and expanding our knowledge in Great Basin archaeology and collections management.
REFERENCES CITED

Justice, Noel D.